
On the Use of Model Checking for Remote Instruction

Thomas Anderson
University of Washington
tom@cs.washington.edu

Ellis Michael
University of Washington

emichael@cs.washington.edu

1 INTRODUCTION
In prior work, the authors developed a set of online labs for
teaching undergraduate distributed systems, called DSLabs [6].
The labs are ambitious – over a ten week quarter at our univer-
sity, each pair of students is asked to design and implement
a highly-available, fault tolerant, linearizable, sharded key-
value store with dynamic load balancing and multi-key trans-
actions. Many students describe completing the project as
among the hardest academic challenges they faced in college.

Most relevant to online teaching of computer networking
topics, DSLabs uses exhaustive model checking to give stu-
dents real-time feedback on the correctness of their code,
without constraining the design space of student solutions.
Like networking protocols, distributed systems are highly con-
current, with behavior that depends on the precise ordering
of events (message drops, message deliveries, timeouts, ma-
chine outages, and network partitions). A faulty program will
often exhibit errors on only some event sequences, compli-
cating testing. By systematically exploring all possible event
sequences, model checking can uncover otherwise hard to
find bugs. To allow for efficient state space reduction, we limit
student protocols to deterministic handlers for event deliv-
ery and timeouts, invoked (repeatedly, in different orderings)
under the control of the DSLabs framework; students can
request randomness from the framework if needed.

Our aim is to provide students the tools to self-diagnose
their designs so that conceptual errors can be caught early,
motivating students who need it to ask for help. The DSLabs
testing framework uses several novel techniques to narrow
and shape the model checking search space, enabling it to find
bugs more rapidly than other approaches. Instead of search-
ing exhaustively up to a defined event depth, our framework
can be configured to search through a series of waypoints
(such as a series of outages or partitions that are known to
be troublesome) before continuing the search. For Paxos, for
example, we have a test that exercises majority intersection.
For distance vector routing, one could insert a specific link
weight update after convergence, using exhaustive search to
ensure that no routing loops occur regardless of the sequence
of events after the update. Each assignment includes a few
dozen tests of this sort.

To be practical, we constrain the tests for each assignment
to complete within a few minutes on a department server or
student laptop.1 (In industrial settings, it is common to run
model checking for days across a large cluster.) Even so, the
DSLabs framework can find bugs that manifest after several

1One of our students created a meme to represent the fans on their PC while
the tests were running [9].

dozen timing-dependent concurrent events. In most cases,
these bugs would be difficult for even a highly sophisticated
teaching assistant to find by manual code inspection – an
approach totally impractical to do at scale given that the
course is taken by about 250 students per year at our university.
We periodically validate our tests by running more exhaustive
searches of student code offline; if we find new, uncaught
bugs, we modify the tests to be more general in subsequent
offerings.

When the model checker does uncover a violation of a
safety property, it produces a concrete system trace describ-
ing which exact sequence of events, out of potentially millions
of possible sequences, will reproduce the bug. This trace is
either minimal by construction (i.e., because it was found
via breadth-first search) or is run through a trace-shortening
function. While these traces do not describe why the bug
manifests, students often find it intuitive to reason about cor-
rectness by counterexample. Understanding which specific
sequences of events lead to unexpected behavior is often the
first step to students obtaining a deeper understanding of the
problem specification. For concurrent code especially, where
any change may perturb the specific execution sequence taken
by a test suite, model checking can help remove the uncer-
tainty of whether a bug is truly fixed.

The pandemic provides a natural experiment for the ef-
ficacy of automated model checking and self-diagnosis for
remote learning of advanced computer science topics. The
University of Washington runs on the quarter system, with
the winter quarter starting immediately after New Year’s Day;
each quarter has ten weeks of instruction, a week of exams/fi-
nal projects, and a week break between terms. Thus, spring
quarter starts twelve weeks after the beginning of winter quar-
ter. DSLabs was introduced at the undergraduate level in the
spring 2017, offered again in spring 2018 and 2019, and due
to increased student demand, offered twice (once in winter
and once in spring) for 2020.

The timing of the Washington virus outbreak and subse-
quent closure of the University meant that the first eight weeks
of winter quarter 2020 instruction proceeded normally, with
a ninth week of declining physical class attendance. For the
final week of the quarter, the campus closed and lectures (in
this class and many others) were cancelled. For spring quarter
2020, the same class was offered online in the context where
the entire campus was operated remotely, including discus-
sion sections and office hours. For the previous live offerings,
lecture videotapes were collected automatically and made
available to students, allowing physical lecture attendance to
be optional.



2 RELATED WORK
Prior studies of live versus online learning have shown mixed
results. At the high school level, a recent study looked at
student math progress using an online learning system in place
prior to school shutdown. The tool was originally designed
to be used as part of mixed live and online instruction, but
was converted to completely online use after the shutdown.
Nationwide, students had uneven but generally lower rates
of progress, with notably worse outcomes for lower income
school systems [7].

Studies of online learning at the college level have been
generally limited to either freshman classes [1, 3–5] or for-
profit education [2]. Methodologies and experimental design
differ among these studies, including varying the amount of
live instruction in mixed settings, as well as comparing live
versus entirely online education. In general, the results paint
a consistent picture: students in the top third in terms of en-
tering GPA see only a small, often statistically insignificant
impairment in learning outcomes, from learning online ver-
sus live education. However, students with worse academic
preparation and skills often experience significantly worse
outcomes – a third to a half a grade point lower on common
exams relative to what they would be expected to achieve had
the class been taught live.

The college-level studies described above generally used
the same instructional methodology for online versus live
lectures, leaving open the question about whether innovative
instructional techniques can close the gap imposed by on-
line learning, particularly for struggling students. Other work
has shown the promise of better tools for self-diagnosis. For
example, a study of randomly assigned students in a fresh-
man psychology course at the University of Texas at Austin
showed that low income students who received customized
online quizzes at the beginning of each lecture did on average
a half a grade point better than those who did not [8], with
significant spill-over effects for other classes those students
were taking at the same time. Thus, preparation, study habits,
social context, and supporting software all should be expected
to have a significant effect on student outcomes with online
learning.

3 RESULTS
We compare the cumulative distribution of student perfor-
mance on the lab assignments across the most recent four
offerings of UW’s distributed systems class in Figure 1. We
caution there are a number of confounding factors that limit
the comparison across terms; we describe those factors next.

Spring 2020 was entirely online, taught by one of the au-
thors. Winter 2020 was live for the portions of the class most
relevant to the labs, taught by a colleague. Spring 2018 and
2019 were live, taught by each of the two authors. About half
of the teaching assistants were the same between Winter and
Spring 2020. Even when personnel is a constant, however,
teaching effectiveness tends to improve with experience.

	0

	0.2

	0.4

	0.6

	0.8

	1

40% 50% 60% 70% 80% 90% 100%

Fr
ac

tio
n	

of
	G

ra
de

s	L
ow

er
	(C

DF
)

Final	Lab	Grade

Spring	2018
Spring	2019
Winter	2020
Spring	2020

Figure 1: Cumulative distribution of DSLabs project
grades across four offerings of distributed systems at
the University of Washington-Seattle. Spring 2020 was
taught entirely online.

We focus on the lab portion of the grade as the class has
no final, and problem sets varied from year to year. The lab
comprised the majority of the student grade in all quarters.
Some improvements were made to the labs after the 2018 and
2019 offerings; in particular, some tests were added as we
learned more about places that the students had difficulty. We
normalize results to the maximum possible score to partially
correct for this effect.

The course is not curved, and so students can generally
determine in advance what grade they can expect; however,
the threshold for a perfect score can vary depending on the
offering and instructor. Students could complete additional
work for extra credit. In particular, we made parts of the lab
optional for Spring 2018 as we were learning how to teach the
material in the labs. The expectations in Winter and Spring
2020 were to complete almost all of the lab (to the same
degree). For Spring 2019, students were asked to complete
the entire lab.

The class is an elective, taken primarily by computer sci-
ence majors (other students may petition), and most com-
monly by students in their final year of study. Since the future
closure for spring quarter was unforeseeable by (most) stu-
dents, the choice of Winter versus Spring 2020 registration
was independent of delivery method. The two instructors in
Winter and Spring received similarly high teaching ratings.

Students in Spring 2020 were made aware that the course
would be online, and students could choose to de-register.
However, for most students, the course would not be offered
again prior to their graduation. Pre-registration was completed
shortly before virus spread was observed in Washington state.
About 15-20% of students dropped the class between that
point and the end of the first week of classes. That is somewhat
higher than normal. Some students opted to register but with
a lighter than average course load given that all classes would
be online.



4 CONCLUSIONS
The results qualitatively support the hypothesis that educa-
tional tools supporting self-diagnosis can be an effective
bridge to normalize achievement outcomes for online ver-
sus live instruction, especially for lower achieving students.
Fewer students than expected did extra credit in the online
version of the class, but contrary to prior studies, students in
the lower half of the class did as well or better than in previ-
ous terms. The extreme lower tail of the curve for the various
offerings was similar, well within the expected variation for
the number of students in the class. Course expectations and
the experience and skill of the teaching assistants had a larger
effect on student outcomes than whether the course was of-
fered live versus online, at least in this setting of an advanced
elective computer science course with strong software tools
to support online student learning.

REFERENCES
[1] W. T. Alpert, K. A. Couch, and O. R. Harmon. A Random-

ized Assessment of Online Learning. American Economic
Review, 106(5):378–82, 2016.

[2] E. P. Bettinger, L. Fox, S. Loeb, and E. S. Taylor. Virtual
Classrooms: How Online College Courses Affect Student
Success. American Economic Review, 107(9):2855–2875,
2017.

[3] W. G. Bowen, M. M. Chingos, K. A. Lack, and T. I. Ny-
gren. Interactive Learning Online at Public Universities:
Evidence from a Six-Campus Randomized Trial. Journal
of Policy Analysis and Management, 33(1):94–111, 2014.

[4] D. Figlio, M. Rush, and L. Yin. Is It Live or Is It Internet?
Experimental Estimates of the Effects of Online Instruc-
tion on Student Learning. Journal of Labor Economics,
31(4):763–84, 2013.

[5] T. Joyce, S. Crockett, D. Jaeger, O. Altindag, and
S. O’Connell. Does Classroom Time Matter? Economics
of Education Review, (46):64–77, 2015.

[6] E. Michael, D. Woos, T. E. Anderson, M. D. Ernst, and
Z. Tatlock. Teaching Rigorous Distributed Systems With
Efficient Model Checking. In Proceedings of the Four-
teenth EuroSys Conference 2019, Dresden, Germany,
March 25-28, 2019, pages 32:1–32:15, 2019.

[7] OpportunityInsights. Track the Recovery:
https://tracktherecovery.org, 2020.

[8] J. Pennebaker, S. Gosling, and J. Ferrell. daily online
testing in large classes: Boosting college performance
while reducing achievement gaps. 2013.

[9] A. Student. Literally every fan in my PC:
https://imgur.com/BbqULTc, 2020.


