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Abstract

High performance distributed storage systems face the chal-
lenge of load imbalance caused by skewed and dynamic work-
loads. This paper introduces Pegasus, a new storage system
that leverages new-generation programmable switch ASICs
to balance load across storage servers. Pegasus uses selective
replication of the most popular objects in the data store to
distribute load. Using a novel in-network coherence directory,
the Pegasus switch tracks and manages the location of repli-
cated objects. This allows it to achieve load-aware forwarding
and dynamic rebalancing for replicated keys, while still guar-
anteeing data coherence and consistency. The Pegasus design
is practical to implement as it stores only forwarding meta-
data in the switch data plane. The resulting system improves
the throughput of a distributed in-memory key-value store by
more than 10× under a latency SLO – results which hold
across a large set of workloads with varying degrees of skew,
read/write ratio, object sizes, and dynamism.

1 Introduction
Distributed storage systems are tasked with providing fast,
predictable performance in spite of immense and unpre-
dictable load. Systems like Facebook’s memcached deploy-
ment [50] store trillions of objects and are accessed thousands
of times on each user interaction. To achieve scale, these sys-
tems are distributed over many nodes; to achieve performance
predictability, they store data primarily or entirely in memory.

A key challenge for these systems is balancing load in the
presence of highly skewed workloads. Just as a celebrity may
have many millions more followers than the average user, so
too do some stored objects receive millions of requests per
day while others see almost none [3, 67]. Moreover, the set of
popular objects changes rapidly as new trends rise and fall [5].
While classic algorithms like consistent hashing [30] are effec-
tive at distributing load when all objects are of roughly equal
popularity, here they fall short: requests for a single popular
object commonly exceed the capacity of any individual server.

Replication makes it possible to handle objects whose re-
quest load exceeds one server’s capacity. Replicating every
object, while effective at load balancing [13, 49], introduces
a high storage overhead. Selective replication of only a set of
hot objects avoids this overhead. Leveraging prior analysis of

caching [17], we show that surprisingly few objects need to
be replicated in order to achieve strong load-balancing prop-
erties. However, keeping track of which objects are hot and
where they are stored is not straightforward, especially when
the storage system may have hundreds of thousands of clients,
and keeping multiple copies consistent is even harder [50].

We address these challenges with Pegasus, a distributed
storage system that uses a new architecture for selective repli-
cation and load balancing. Pegasus uses a programmable data-
plane switch to route requests to servers. Drawing inspiration
from CPU cache coherency protocols [4, 19, 22, 31, 34, 36,
37, 40], the Pegasus switch acts as an in-network coherence
directory that tracks which objects are replicated and where.
Leveraging the switch’s central view of request traffic, it can
forward requests to replicas in a load-aware manner. Unlike
prior approaches, Pegasus’s coherence directory also allows
it to dynamically rebalance the replica set on each write oper-
ation, accelerating both read- and write-intensive workloads –
while still maintaining strong consistency.

Pegasus introduces several new techniques, beyond the
concept of the in-network coherence directory itself. It uses
a lightweight version-based coherence protocol to ensure
consistency. Load-aware scheduling is implemented using a
combination of reverse in-network telemetry and in-switch
weighted round-robin policy. Finally, to provide fault toler-
ance, Pegasus uses a simple chain replication [66] protocol
to create multiple copies of data in different racks, each load-
balanced with its own switch.

Pegasus is a practical approach. We show that it can be
implemented using a Barefoot Tofino switch, and provides ef-
fective load balancing with minimal switch resource overhead.
In particular, unlike prior systems [29, 45], Pegasus stores no
application data in the switch, only metadata. This reduces
switch memory usage to less than 3.5% of the total switch
SRAM, permitting it to co-exist with existing switch function-
ality and thus reducing a major barrier to adoption [56].

Using 28 servers and a Pegasus switch, we show:
• Pegasus can increase the throughput by up to 10× – or re-

duce by 90% the number of servers required – of a system
subject to a 99%-latency SLO.

• Pegasus can react quickly to dynamic workloads where the
set of hot keys changes rapidly, and can recover quickly
from server or rack failures.
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• Pegasus can provide strong load balancing properties by
only replicating a small number of objects.

• Pegasus is able to achieve these benefits for many classes
of workloads, both read-heavy and write-heavy, with dif-
ferent object sizes and levels of skew.

2 Motivation
Real-world workloads for storage systems commonly ex-
hibit highly skewed object access patterns [3, 6, 26, 50, 51].
Here, a small fraction of popular objects receive dispropor-
tionately more requests than the remaining objects. Many
such workloads can be modeled using Zipfian access distri-
butions [3, 5, 6, 67]; recent work has shown that some real
workloads exhibit unprecedented skew levels (e.g., Zipf distri-
butions with α > 1) [10, 67]. Additionally, the set of popular
objects changes dynamically: in some cases, the average hot
object loses its popularity within 10 minutes [5].

Storage systems typically partition objects among multi-
ple storage servers for scalability and load distribution. The
implication of high skew in workloads is that load across stor-
age servers is also uneven: the few servers that store the most
popular objects will receive disproportionately more traffic
than the others. The access skew is often high enough that the
load for an object can exceed the processing capacity of a sin-
gle server, leading to server overload. To reduce performance
penalties, the system needs to be over-provisioned, which sig-
nificantly increases overall cost.

Skewed workloads are diverse. Read-heavy workloads have
been the focus of many recent studies, and many systems op-
timize heavily for them (e.g., assuming > 95% of requests
are reads) [21, 29, 41, 45]. While many workloads do fall
into this category, mixed or write-heavy workloads are also
common [67]. Object sizes also vary widely, even within
one provider. Systems may store small values (a few bytes),
larger values (kilobytes to megabytes), or a combination of
the two [1,3,5,67]. An ideal solution to workload skew should
be able to handle all of these cases.

2.1 Existing Approaches

How should a storage system handle skewed workloads,
where the request load for a particularly popular object might
exceed the processing capability of an individual server? Two
existing approaches have proven effective here: caching pop-
ular objects in a faster tier, and replicating objects to increase
aggregate load capacity.

Caching Caching has long served as the standard approach
for accelerating database-backed web applications. Recent
work has demonstrated, both theoretically and practically, the
effectiveness of a caching approach: only a small number
of keys need to be cached in order to achieve provable load
balancing guarantees [17, 29, 41].

There are, however, two limitations with the caching ap-
proach. First, the effectiveness of caching hinges on the abil-
ity to build a cache that can handle orders of magnitude more

requests than the storage servers. Once an easily met goal,
this has become a formidable challenge as storage systems
themselves employ in-memory storage [50, 53, 58], clever
data structures [42, 46], new NVM technologies [25, 68], and
faster network stacks [38,42,48]. Recent efforts to build faster
caches out of programmable switches [29, 45] address this,
but hardware constraints impose significant limitations, e.g.,
an inability to support values greater than 128 bytes. Sec-
ondly, caching solutions only benefit read-heavy workloads,
as cached copies must be invalidated until writes are pro-
cessed by the storage servers.

Selective Replication Replication is another common so-
lution to load imbalance caused by skewed workloads. By
selectively replicating popular objects [2, 9, 13, 50], requests
to these objects can be sent to any of the replicas, effectively
distributing load across servers.

Existing selective replication approaches, however, face
two challenges. First, clients must be able to identify the
replicated objects and their locations – which may change
as object popularity changes. This could be done using a cen-
tralized directory service, or by replicating the directory to
the clients. Both pose scalability limitations: a centralized di-
rectory service can easily become a bottleneck, and keeping
a directory synchronized among potentially hundreds of thou-
sands of clients is not easy.

Providing consistency for replicated objects is the second
major challenge – a sufficiently complex one that existing sys-
tems do not attempt to address it. They either replicate only
read-only objects, or require users to explicitly manage in-
consistencies resulting from replication [2, 9]. The solutions
required to achieve strongly consistent replication (e.g., con-
sensus protocols [35]) are notoriously complex, and incur sig-
nificant coordination overhead [39], particularly when objects
are modified frequently.

2.2 Pegasus Goals

The goal of our work is to provide an effective load balanc-
ing solution for the aforementioned classes of challenging
workloads. Concretely, we require our system to 1) provide
good load balancing for dynamic workloads with high skew,
2) work with fast in-memory storage systems, 3) handle arbi-
trary object sizes, 4) guarantee linearizability [24], and 5) be
equally effective for read-heavy, write-heavy, and mixed read-
/write workloads. As listed in Table 1, existing systems make
explicit trade-offs and none of them simultaneously satisfy
all five properties. In this paper, we will introduce a new
distributed storage load balancing approach that makes no
compromises, using an in-network coherence directory.

3 System Model
Pegasus is a design for rack-scale storage systems consisting
of a number of storage servers connected via a single top-of-
rack (ToR) switch, as shown in Figure 1. Pegasus combines
in-switch load balancing logic with a new storage system. The
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Highly Skewed
Workload

Fast In-Memory
Store

All Object
Sizes

Strong
Consistency

Any Read-Write
Ratio

Consistent Hashing [30] 7 3 3 7 –
Slicer [2] 3 7 3 7 –

Orleans [9] 3 7 3 7 –
EC-Cache [57] 3 7 7 3 3

Scale-Out ccNUMA [21] 3 3 3 3 7
SwitchKV [41] 3 7 3 3 7
NetCache [29] 3 3 7 3 7

Pegasus 3 3 3 3 3

Table 1: A comparison of existing load balancing systems vs. Pegasus. In the "Any Read-Write Ratio" column, we only consider systems that
provide strong consistency.

ToR Switch

Clients

L2/L3
Routing

In-Network 
Directory

Controller

Storage 
Server

Storage 
Server

Storage 
Server

Figure 1: Pegasus system model. Pegasus is a rack-scale storage
system. It augments the top-of-rack switch with an in-network co-
herence directory to balance load across storage servers in the rack.
Servers store data in memory for fast and predictable performance.

Pegasus system provides a key-value store with a read/write
interface. It does not support read-modify-write or atomic
cross-key operations. Pegasus ensures strong data consistency
(specifically, linearizability [24]). It uses in-memory storage
to offer fast and predictable performance.

The Pegasus architecture is a co-design of in-switch pro-
cessing and an application-level protocol. This is made possi-
ble by leveraging the capabilities of newly available switches
with programmable dataplanes, such as the Barefoot Tofino,
Cavium XPliant, or Broadcom Trident3 families. Broadly
speaking, these chips offer reconfigurability in three relevant
areas: (1) programmable parsing of application-specific head-
ers; (2) flexible packet processing pipelines, usually consist-
ing of 10–20 pipeline stages each capable of a match lookup
and one or more ALU operations; and (3) general-purpose
memory, on the order of 10 MB. Importantly, all of these
features are on the switch dataplane, meaning that they can
be used while processing packets at full line rate – a total
capacity today measured in terabits per second.

Pegasus provides load balancing at the rack level, i.e., 32–
256 servers connected by a single switch. It does not provide
fault tolerance guarantees within the rack. Larger-scale, re-

silient systems can be built out of multiple Pegasus racks. For
these systems, Pegasus ensures availability using a chain repli-
cation protocol to replicate objects across multiple racks for
fault tolerance.

4 A Case for In-Network Directories
As we have discussed in §2, selectively replicating popular
objects can offer good load balancing for highly skewed work-
loads, and it avoids certain drawbacks of a caching approach.
Existing selective replication solutions, however, fall short in
providing efficient directory services and strong consistency
for the dynamic set of replicated objects. Our key observation
is that in a rack-scale storage system (§3), the ToR switch
serves as a central point of the system and is on the path of
every client request and server reply. This enables us to imple-
ment a coherence directory abstraction in the ToR switch that
addresses both challenges at the same time. It can track the lo-
cation of every replicated object in the system and forward re-
quests to servers with available capacity, and even change the
number or location of replicas by determining where to send
WRITE requests. Leveraging this in-network coherence direc-
tory, we co-design a version-based coherence protocol which
guarantees linearizability and is highly efficient at processing
object updates, enabling us to provide good load balancing
even for write-intensive workloads.

4.1 Coherence Directory for Replicated Data

How do we design an efficient selective replication scheme
that provides strong consistency? At a high level, the sys-
tem needs to address the following challenges: first, it needs
to track the replicated items and their locations with the lat-
est value (i.e., the replica set). Second, read requests for a
replicated object must be forwarded to a server in the cur-
rent replica set. Third, after a write request is completed, all
subsequent read requests must return the updated value.

The standard distributed systems approaches to this prob-
lem do not work well in this environment. One might try to
have clients contact any server in the system, which then for-
wards the query to an appropriate replica for the data, as in
distributed hash tables [14, 59, 60]. However, for in-memory
storage systems, receiving and forwarding a request imposes
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nearly as much load as executing it entirely. Nor is it feasible
for clients to directly track the location of each object (e.g., us-
ing a configuration service [8, 27]), as there may be hundreds
of thousands or millions of clients throughout the datacenter,
and it is a costly proposition to update each of them as new
objects become popular or an object’s replica set is updated.

In Pegasus, we take a different approach. We note that these
are the same set of challenges faced by CPU cache coherence
and distributed shared memory systems. To address the above
issues, these systems commonly run a cache coherence proto-
col using a coherence directory [4, 19, 22, 31, 34, 36, 37, 40].
For each data block, the coherence directory stores an entry
that contains the set of processors that have a shared or exclu-
sive copy. The directory is kept up to date as processors read
and write blocks – invalidating old copies as necessary – and
can always point a processor to the latest version.

A coherence directory can be applied to selective replica-
tion. It can track the set of replicated objects and forward read
requests to the right servers, and it can ensure data consistency
by removing stale replicas from the replica set. However, to
use a coherence directory for a distributed storage system re-
quires the directory to handle all client requests. Implemented
on a conventional server, it will quickly become a source of
latency and a throughput bottleneck.

4.2 Implementing Coherence Directory in the Network

Where should we implement a coherence directory that pro-
cesses all client requests while not becoming a performance
bottleneck? The ToR switch, as shown in Figure 1, provides
a viable option for our targeted rack-scale storage systems.
Switch ASICs are optimized for packet I/O: current gener-
ation switches can support packet processing at more than
10 Tb/s aggregate bandwidth and several billion packets per
second [64, 65]. The programmable switches we target have
a fixed-length reconfigurable pipeline, so any logic that fits
within the pipeline can run at the switch’s full line rate. Thus,
implementing the coherence directory in the ToR switch for
a rack-scale storage system will not become the bottleneck
nor add significant latency, as it already processes all network
traffic for the rack.

But can we implement a coherence directory efficiently in
the ToR switch? To do so, two challenges have to be addressed.
First, we need to implement all data structures and functional
logic of a coherence directory in the switch data plane. We
show that this is indeed possible with recent programmable
switches: we store the replicated keys and their replica sets
in the switch’s memory, match and forward based on custom
packet header fields (e.g. keys and operation types), and apply
directory updating rules for the coherence protocol. We give
a detailed description of our switch implementation in §8.

Second, the switch data plane has limited resources and
many are already consumed by bread-and-butter switch func-
tionality [56]. As the coherence directory tracks the replica
set for each replicated object, the switch can only support a

limited number of objects to be replicated. Our design meets
this challenge. Interestingly, it is possible to achieve provable
load balancing guarantees if we only replicate the most popu-
lar O(n logn) objects to all servers, where n is the number of
servers (not keys) in the system (we give a more detailed anal-
ysis of this result in §4.5). Moreover, the coherence directory
only stores small metadata such as key hashes and server IDs.
For a rack-scale system with 32–256 servers, the size of the
coherence directory is a small fraction of the available switch
resources.

4.3 A Coherence Protocol for the Network

Designing a coherence protocol using an in-network coher-
ence directory raises several new challenges. Traditional CPU
cache coherence protocols can rely on an ordered and reliable
interconnection network, and they commonly block proces-
sor requests during a coherence update. Switch ASICs have
limited buffer space and therefore cannot hold packets in-
definitely. Network links between ToR switches and servers
are also unreliable: packets can be arbitrarily dropped, re-
ordered, or duplicated. Many protocols for implementing or-
dered and reliable communication require complex logic and
large buffering space that are unavailable on a switch.

We design a new version-based, non-blocking coherence
protocol to address these challenges. The switch assigns a
monotonically increasing version number to each write re-
quest and inserts it in the packet header. Servers store these
version numbers alongside each object, and attach the version
number in each read and write reply. The switch additionally
stores a completed version number for each replicated ob-
ject in the coherence directory. When receiving read or write
replies (for replicated objects), the switch compares the ver-
sion in the reply with the completed version in the directory.
If the version number in the reply is higher, the switch up-
dates the completed version number and resets the replica set
to include only the source server. Subsequent read requests
are then forwarded to the server with the new value. When
more than one server has the latest value of the object, the
version number in the reply can be equal to the completed
version. In that case, we add the source server (if not already
present) to the replica set so that subsequent read requests can
be distributed among up-to-date replicas.

This protocol – which we detail in §6 – guarantees lineariz-
ability [24]. It leverages two key insights. First, all storage
system requests and replies have to traverse the ToR switch.
We therefore only need to update the in-network coherence di-
rectory to guarantee data consistency. This allows us to avoid
expensive invalidation traffic or inter-server coordination over-
head. Second, we use version numbers, applied by the switch
to packet headers, to handle network asynchrony.

4.4 Load-Aware Scheduling

When forwarding read requests, the switch can pick any of the
servers currently in the replica set. The simplest policy is to

390    14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



select a random server from the set and rely on statistical load
balancing among the servers. However, this approach falls
short when the processing capacity is uneven on the storage
servers (e.g. due to background tasks or different hardware
specifications). To handle this issue, we also implement a
weighted round-robin policy: storage servers periodically re-
port their system load to the controller. The controller assigns
weights for each server based on these load information and
installs them on the switch. The switch then forwards requests
to servers in the replica set proportional to their weights. Note
that our in-network directory approach provides the mecha-
nism for performing server selection. A full discussion of all
scheduling policies is beyond the scope of this paper.

Surprisingly, these mechanisms can also be used for write
requests. At first glance, it appears necessary to broadcast new
writes to all servers in the replica set – potentially creating sig-
nificant load and overloading some of the servers. However,
the switch can choose a new replica set for the object on each
write. It can forward write requests to one or more of the
servers, and the coherence directory ensures data consistency,
no matter which server the switch selects. The ability to move
data frequently allows a switch to use load-aware scheduling
for both read and write requests. This is key to Pegasus’s abil-
ity to improve performance for both read- and write-intensive
workloads.

4.5 Feasibility of An In-Network Coherence Directory

Pegasus makes efficient use of switch resources because it
only tracks object metadata (vs. full object contents [29]), and
only for a small number of objects. We claimed in §4.2 that
Pegasus only needs to replicate the most popular O(n logn)
objects (where n is the number of servers) to achieve strong
load balancing guarantees. This result is an extension of previ-
ous work [17] which showed that caching the O(n logn) most
frequently accessed objects is sufficient to achieve provable
load balancing. That is, if we exclude these objects, the re-
maining load on each server exceeds the average load by at
most a slack factor α , which depends on the constant factors
but is generally quite small; see §9.5. Intuitively, most of the
load in a highly-skewed workload is (by definition) concen-
trated in a few keys, so eliminating that load rebalances the
system.

Our approach, rather than absorbing that load with a cache,
is to redistribute it among the storage servers. A consequence
of the previous result is that if the total request handling ca-
pacity of the system exceeds the request load by a factor of
α , then there exists a way to redistribute the requests of the
top O(n logn) keys such that no server exceeds its capacity.
For read-only workloads, a simple way to achieve this is to
replicate these keys to all servers, then route request to any
server with excess capacity, e.g., by routing a request for a
replicated key to the least-loaded server in the system.

Writes complicate the situation because they must be pro-
cessed by all servers storing the object. As described in §4.4,

SERVERIDIP KEYHASHUDP OP VERETH

Figure 2: Pegasus packet format. The Pegasus application-layer
header is embedded in the UDP payload. OP is the request or reply
type. KEYHASH contains the hash value of the key. VER is an object
version number. SERVERID contains a unique server identifier.

Pegasus can pick a new replica set, and a new replication fac-
tor, for an object on each write. Pegasus accomodates write-
intensive workloads by tracking the write fraction for each
object and setting the replication factor proportional to the ex-
pected number of reads per write, yielding constant overhead.
Strictly speaking, our initial analysis (for read-only work-
loads) may not apply in this case, as it is no longer possible
to send a read to any server. However, since Pegasus can re-
balance the replica set on every write and dynamically adjusts
the replication factor, it remains effective at load balancing
for any read-write ratio. Intuitively, a read-mostly workload
has many replicas, so Pegasus has a high degree of freedom
for choosing a server for each read, whereas a write-mostly
workload has fewer replicas but constantly rebalances them
to be on the least-loaded servers.

5 Pegasus Overview
We implement an in-network coherence directory in a new
rack-scale storage system, Pegasus. Figure 1 shows the
high level architecture of a Pegasus deployment. All storage
servers reside within a single rack. The top-of-rack (ToR)
switch that connects all servers implements Pegasus’s coher-
ence directory for replicated objects.

Switch. The ToR switch maintains the coherence directory:
it stores the set of replicated keys, and for each key, a list
of servers with a valid copy of the data. To reduce switch
resource overhead and to support arbitrary key sizes, the di-
rectory identifies keys by a small fixed-sized hash.

Pegasus defines an application-layer packet header embed-
ded in the L4 payload, as shown in Figure 2. Pegasus re-
serves a special UDP port for the switch to match Pegasus
packets. The application-layer header contains an OP field,
either READ, WRITE, READ-REPLY, or WRITE-REPLY. KEY-
HASH is an application-generated, fixed-size hash value of the
key. VER is an object version number assigned by the switch.
SERVERID contains a unique identification of the server and
is filled by servers on replies. If at-most-once semantics is
required (§6.4), the header will additionally contain REQID, a
globally unique ID for the request (assigned by the client).
Non-Pegasus packets are forwarded using standard L2/L3
routing, keeping the switch fully compatible with existing
network protocols.

To keep space usage low, the Pegasus switch keeps direc-
tory entries only for the small set of replicated objects. Read
and write requests for replicated keys are forwarded accord-
ing to the Pegasus load balancing and coherence protocol. The
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Switch States:
• ver_next: next version number
• rkeys: set of replicated keys
• rset: map of replicated keys→ set of servers with a valid copy
• ver_completed: map of replicated keys→ version number of the

latest completed WRITE

Figure 3: Switch states

other keys are mapped to a home server using a fixed algo-
rithm, e.g., consistent hashing [30]. Although this algorithm
could be implemented in the switch, we avoid the need to do
so by having clients address their packets to the appropriate
server; for non-replicated keys, the Pegasus switch simply for-
wards them according to standard L2/L3 forwarding policies.

Controller. The Pegasus control plane decides which keys
should be replicated. It is responsible for updating the co-
herence directory with the most popular O(n logn) keys. To
do so, the switch implements a request statistics engine that
tracks the access rate of each key using both the data plane
and the switch CPU. The controller – which can be run on the
switch CPU, or a remote server – reads access statistics from
the engine to find the most popular keys. The controller keeps
only soft state, and can be immediately replaced if it fails.

6 Pegasus Protocol
To simplify exposition, we begin by describing the core Pe-
gasus protocol (§6.2), under the assumption that the set of
popular keys is fixed, and show that it provides linearizability.
We then show how to handle changes in which keys are popu-
lar (§6.3), and how to provide exactly-once semantics (§6.4).
Finally, we discuss server selection policies (§6.5) and other
protocol details (§6.6).

Additionally, a TLA+ specification of the protocol which
we have model checked for safety is available in our public
repository [55].

6.1 Switch State

To implement an in-network coherence directory, Pegasus
maintains a small amount of metadata in the switch data-
plane, as listed in Figure 3. A counter ver_next keeps the
next version number to be assigned. A lookup table rkeys

stores the O(n logn) replicated hot keys, using KEYHASH in
the packet header as the lookup key. For each replicated key,
the switch maintains the set of servers with a valid copy in
rset, and the version number of the latest completed WRITE
in ver_completed. In §8, we elaborate how we store this state
and implement this functionality in the switch dataplane.

6.2 Core Protocol: Request and Reply Processing

The core Pegasus protocol balances load by tracking the
replica set of popular objects. It can load balance READ oper-
ations by choosing an existing replica to handle the request,
and can change the replica set for an object by choosing which
replicas process WRITE operations. Providing this load balanc-
ing while ensuring linearizability requires making sure that

Algorithm 1 HandleRequestPacket(pkt)

1: if pkt.op = WRITE then
2: pkt.ver← ver_next++
3: end if
4: if rkeys.contains(pkt.keyhash) then
5: if pkt.op = READ then
6: pkt.dst← select replica from rset[pkt.keyhash]
7: else if pkt.op = WRITE then
8: pkt.dst← select from all servers
9: end if

10: end if
11: Forward packet

Algorithm 2 HandleReplyPacket(pkt)

1: if rkeys.contains(pkt.keyhash) then
2: if pkt.ver > ver_completed[pkt.keyhash] then
3: ver_completed[pkt.keyhash]← pkt.ver
4: rset[pkt.keyhash]← set(pkt.serverid)
5: else if pkt.ver = ver_completed[pkt.keyhash] then
6: rset[pkt.keyhash].add(pkt.serverid)
7: end if
8: end if
9: Forward packet

the in-network directory tracks the location of the latest suc-
cessfully written value for each replicated key. Pegasus does
this by assigning version numbers to incoming requests and
monitoring outgoing replies to detect when a new version has
been written.

6.2.1 Handling Client Requests

The Pegasus switch assigns a version number to every WRITE
request, by writing ver_next into its header and increment-
ing ver_next (Algorithm 1 line 1-3). It determines how to
forward a request by matching the request’s key hash with the
rkeys table. If the key is not replicated, the switch simply for-
wards the request to the original destination – the home server
of the key. For replicated keys, it forwards READ requests
by choosing one server from the key’s rset. For replicated
WRITEs, it chooses one or more destinations from the set of
all servers. In both cases, this choice is made according to the
server selection policy (§6.5).

Storage servers maintain a version number for each key
alongside its value. When processing a WRITE request, the
server compares VER in the header with the version in the
store, and updates both the value and the version number only
if the packet has a higher VER. It also includes the version
number read or written in the header of READ-REPLY and
WRITE-REPLY messages.

6.2.2 Handling Server Replies

When the switch receives a READ-REPLY or a WRITE-REPLY,
it looks up the reply’s key hash in the switch rkeys table.
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If the key is replicated, the switch compares VER in the
packet header with the latest completed version of the key in
ver_completed. If the reply has a higher version number, the
switch updates ver_completed and resets the key’s replica
set to include only the source server (Algorithm 2 line 1-4). If
the two version numbers are equal, the switch adds the source
server to the key’s replica set (Algorithm 2 line 5-7).

The effect of this algorithm is that write requests are sent
to a new replica set which may or may not overlap with the
previous one. As soon as one server completes and acknowl-
edges the write, the switch directs all future read requests to it
– which is sufficient to ensure linearizability. As other replicas
also acknowledge the same version of the write, they begin to
receive a share of the read request load.

6.2.3 Correctness

Pegasus provides linearizability [24]. The intuition behind this
is that the Pegasus directory monitors all traffic, and tracks
where the latest observed version of a key is located. As soon
as any client sees a new version of the object – as indicated by
a READ-REPLY or WRITE-REPLY containing a higher version
number – the switch updates the directory to send future read
requests to the server holding that version.

The critical invariant is that the Pegasus directory contains
at least one address of a replica storing a copy of the latest
write to be externalized, as well as a version number of that
write. A write is externalized when its value can be observed
outside the Pegasus system, which can happen in two ways.
The way a write is usually externalized is when a WRITE-
REPLY is sent, indicating that the write has been completed.
It is also possible, if the previous and current replica set over-
lap, that a server will respond to a concurrent READ with
the new version before the WRITE-REPLY is delivered. Pega-
sus detects both cases by monitoring both WRITE-REPLY and
READ-REPLY messages, and updating the directory if VER
exceeds the latest known compatible version number.

This invariant, combined with Pegasus’s policy of forward-
ing reads to a server from the directory’s replica set, is suffi-
cient to ensure linearizability:
• WRITE operations can be ordered by their version numbers.
• If a READ operation r is submitted after a WRITE operation

w completes, then r comes after w in the apparent order of
operations because it is either forwarded to a replica with
the version written by w or a replica with a higher version
number.

• If a READ operation r2 is submitted after another READ r1
completes, then it comes after r1 in the apparent order of
operations, because it will either be forwarded to a replica
with the version r1 saw or a replica with a newer version.

6.3 Adding and Removing Replicated Keys

Key popularities change constantly. The Pegasus controller
continually monitors access frequencies and updates the co-
herence directory with the most popular O(n logn) keys. We

elaborate how access statistics are maintained in §8.
When a new key becomes popular, Pegasus must create a di-

rectory entry for it. The Pegasus controller does this by adding
the key’s home server to rset. It also adds a mapping for the
key in ver_completed, associating it with ver_next−1, the
largest version number that could have been assigned to a
write to that key at the key’s home server. Finally, the con-
troller adds the key to rkeys. This process does not imme-
diately move or replicate the object. However, later WRITE
requests will be sent to a new (and potentially larger) replica
set, with a version number necessarily larger than the one
added to the directly. Once these newly written values are
externalized, they will added to the directory as normal.

Transitioning a key from the replicated to unreplicated state
is similarly straight-forward. The controller simply marks the
switch’s directory entry for transition. The next WRITE for
that key is sent to its home server; once the matching WRITE-
REPLY is received, the key is removed from the directory.

Read-only objects and virtual writes. The protocol above
only moves an object to a new replica set (or back to its home
node) on the next write. While this simplifies design, it poses
a problem for objects that are read-only or modified infre-
quently. Conceptually, Pegasus addresses this by performing
a write that does not change the object’s value when an object
needs to be moved. More precisely, the controller can force
replication by issuing a virtual write to the key’s home server,
instructing it to increment its stored version number to the one
in ver_completed and to forward that value to other replicas
so that they can be added to rset and assist in serving reads.

6.4 Avoiding Duplicate Requests

At-most-once semantics, where duplicated or retried write re-
quests are not reexecuted, are desirable. There is some debate
about whether these semantics are required by linearizability
or an orthogonal property [18,28], and many key-value stores
do not have this property. Pegasus accommodates both camps
by optionally supporting at-most-once semantics.

Pegasus uses the classic mechanism of maintaining a table
of the most recent request from each client [43] to detect du-
plicate requests. This requires that the same server process the
original and the retried request, a requirement akin to “sticki-
ness” in classic load balancers. A simple way to achieve this
would be to send each write request initially to the object’s
home server. However, this sacrifices load balancing of writes.

We instead provide duplicate detection without sacrificing
load balancing by noticing that it is not necessary for one
server to see all requests for an object – only that a retried
request goes to the same server that previously processed it.
Thus, Pegasus forwards a request initially to a single detec-
tor node – a server deterministically chosen by the request’s
unique REQID, rather than the key’s hash. It also writes into a
packet header the other replicas, if any, that the request should
be sent to. The detector node determines if the request is a du-
plicate; if not, it processes it and forwards the request to the
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other selected servers.
Some additional care is required to migrate client table

state when a key transitions from being unpopular to popular
and vice versa. We can achieve this by pausing WRITEs to the
key during transitions. When a new key becomes popular, the
controller retrieves existing client table entries from the home
server and propagates them to all servers. When a popular key
becomes unpopular, it queries all servers to obtain their client
tables, and sends their aggregation (taking the latest entry for
each client) to the home server. Once this is complete, the
system can resume processing WRITEs for that key.

6.5 Server Selection Policy

Which replica should be chosen for a request? This is a policy
question whose answer does not impact correctness (i.e., lin-
earizability) but determines how effective Pegasus is at load
balancing. As described in §4.4, we currently implement two
such policies. The first policy is to simply pick a random
replica and rely on statistical load balancing. A more sophisti-
cated policy is to use weighted round-robin: the controller as-
signs weights to each server based on load statistics it collects
from the servers, and instructs the switch to select replicas
with frequency proportional to the weights.

Write replication policy. Read operations are sent to ex-
actly one replica. Write requests can be sent to one or more
servers, whether they are in the current replica set or not.
Larger replica set sizes improve load balancing by offering
more options for future read requests, but increase the cost of
write operations. For write-heavy workloads, increasing the
write cost can easily negate any load balancing benefit.

As discussed in §4.5, the switch tracks the average READs
per WRITE for each replicated object. By choosing a replica-
tion factor to be proportional to this ratio, Pegasus can bound
the overhead regardless of the write fraction.

6.6 Additional Protocol Details

Hash collisions. The Pegasus coherence directory acts on
small key hashes, rather than full keys. Should there be a
hash collision involving a replicated key and a non-replicated
key, requests for the non-replicated key may be incorrectly for-
warded to a server that is not its home server. To deal with this
issue, each server tracks the set of all currently replicated keys
(kept up to date by the controller per §6.3). Armed with this
information, a server can forward the improperly forwarded
request to the correct home server. This request chaining ap-
proach has little performance impact: it only affects hash colli-
sions involving the small set of replicated keys. Moreover, we
only forward requests for the unreplicated keys which have
low access rate. In the extremely rare case of a hash collision
involving two of the O(n logn) most popular keys, Pegasus
only replicates one of them to guarantee correctness.

Version number overflow. Version numbers must increase
monotonically. Pegasus uses 64-bit version numbers, which

makes overflow unlikely: it would require processing trans-
actions at the full line rate of our switch for over 100 years.
Extremely long-lived systems, or ones that prefer shorter ver-
sion numbers, can use standard techniques for version number
wraparound.

Garbage collection. When handling WRITEs for replicated
keys, Pegasus does not explicitly invalidate or remove the old
version. Although this does not impact correctness – the co-
herence directory forwards all requests to the latest version
– retaining obsolete copies forever wastes storage space on
servers. We handle this issue through garbage collection. The
Pegasus controller already notifies servers about which keys
are replicated, and periodically reports the last-completed ver-
sion number. Each server, then, can detect and safely remove
a key if it has an obsolete version, or if the key is no longer
replicated (and the server is not the home node for that key).

7 Beyond a Single Rack
Thus far, we have discussed single-rack, single-switch Pe-
gasus deployments. Of course, larger systems need to scale
beyond a single rack. Moreover, the single-rack architecture
provides no availability guarantees when servers or racks fail:
while Pegasus replicates popular objects, the majority of ob-
jects still have just one copy. This choice is intentional, as
entire-rack failures are common enough to make replicating
objects within a rack insufficient for real fault tolerance.

We address both issues with a multi-rack deployment
model where each rack of storage servers and its ToR switch
runs a separate Pegasus instance. The workload is partitioned
across different racks, and chain replication [66] is used to
replicate objects to multiple racks. Object placement is done
using two layers of consistent hashing. A global configuration
service [8, 27] maps each range of the keyspace to a chain of
Pegasus racks. Within each rack, these keys are mapped to
servers as in §5. In effect, each key is mapped to a chain of
servers, each server residing in a different rack.

We advocate this deployment model because it uses in-
switch processing only in the ToR switches in each rack. The
remainder of the datacenter network remains unmodified, and
in particular it does not require any further changes to packet
routing, which has been identified as a barrier to adoption for
network operators [56]. A consequence is that it cannot load
balance popular keys across different racks. Our simulations,
however, indicate that this effect is negligible at all but the
highest workload skew levels: individual servers are easily
overloaded, but rack-level overload is less common.

Replication Protocol. As in the original chain replication,
clients send WRITEs to the head server in the chain. Each
server forwards the request to the next in the chain, until reach-
ing the tail server, which then replies to the client. Clients send
READs to the tail of the chain; that server responds directly to
the client. In each case, if the object is a popular one in that
rack, the Pegasus switch can redirect or replicate it.
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Figure 4: Switch data plane design for the Pegasus coherence directory

Pegasus differs from the original chain replication proto-
col in that it cannot assume reliable FIFO channels between
servers. To deal with network asynchrony, it reuses the version
numbers provided by the Pegasus switches to ensure consis-
tency. Specifically, we augment Algorithm 1 in the following
way: when a Pegasus switch receives a WRITE request, it only
stamps ver_next into the request if VER in the packet header
is not null; otherwise, it leaves the version number in the re-
quest unmodified and sets its ver_next to be one greater than
that value (if it isn’t already). The effect of this modification
is that WRITE requests only carry version numbers from the
head server’s ToR switch; and the number does not change
when propagating along the chain. This ensures that all repli-
cas apply WRITEs in the same order.

Reconfiguring the Chains. If a Pegasus rack fails, it can
be replaced using the standard chain replication protocol [66].
When the failure is noted, the configuration service is notified
to remove the failed rack from all chains it participated in,
and to add a replacement. This approach leverages the cor-
rectness of the underlying chain replication protocol, treating
the Pegasus rack as functionally equivalent to a single replica.

If a system reconfiguration changes the identity of the head
rack for a key range, subsequent WRITEs will get version num-
bers from a different head switch. If the new head rack was
present in the old chain, these version numbers will necessar-
ily be greater than any previously completed writes. If a rack
is added to a chain as the head, the ver_next in the rack’s
switch must first be updated to be greater than or equal to the
other switches in the chain.

If an individual server fails, a safe solution is to treat its
entire rack as faulty and replace it accordingly. While cor-
rect, this approach is obviously inefficient. Pegasus has an
optimized reconfiguration protocol (omitted due to space con-
straints) that only moves data that resided on the failed server.

8 Switch Implementation

The coherence directory (§6) plays a central role in Pegasus:
it tracks popular objects and their replica sets; it distributes
requests for load balancing; it implements the version-based
coherence protocol; and it updates the set of replicated objects
based on dynamic workload information. In this section, we
detail the implementation of the Pegasus coherence directory
in the data plane of a programmable switch.

8.1 Switch Dataplane Implementation

Figure 4 shows the schematic of the data plane design for
the coherence directory. When a Pegasus packet enters the
switch ingress pipeline, a lookup table checks if it refers to
a replicated object. The packet then traverses a version num-
ber engine and a replica set directory, which implement the
version-based coherence protocol (Algorithms 1 and 2). For
request packets, one or more servers are selected from the
replica set directory, and the packet’s destination is updated
by an address rewrite table. Finally, all Pegasus packets go
through a statistics engine before being routed to the egress
pipeline.

We leverage two types of stateful memory primitives avail-
able on programmable switching ASICs (such as Barefoot’s
Tofino [63]) to construct the directory: exact-match lookup
tables and register arrays. A lookup table matches fields in
the packet header and performs simple actions such as arith-
metics, header rewrites, and metadata manipulations. Lookup
tables, however, can only be updated from the control plane.
Register arrays, on the other hand, are accessed by an index
and can be read and updated at line rate in the data plane. The
rest of the section details the design of each component.

Replicated Keys Lookup Table When adding replicated
keys (§6.3), the controller installs its KEYHASH in an
exact-match lookup table. The table only needs to maintain
O(n logn) entries, where n is the number of servers in the
rack. The switch matches each Pegasus header’s KEYHASH
with entries in the table. If there is a match, the index number
associated with the entry is stored in the packet metadata to
select the corresponding replicated key in later stages.

Version Number Engine We use two register arrays to
build the version number engine, as shown in Figure 5. The
first register array contains a single element – the next ver-
sion number. If the packet is a WRITE request, the version
number in the register is incremented and the switch writes
the version into the packet header. The second register array
stores the completed version number for each replicated key,
and uses numeric ALUs to compare and update the version
number (per Algorithm 2). The comparison result is passed to
the next stage.

Replica Set Directory As shown in Figure 6, we build the
replica set directory using three register arrays to store: (i) the
size of each replica set, (ii) a bitmap indicating which servers
are currently in each replica set, and (iii) a list of server IDs in
each set. When choosing replicas for Pegasus READ requests,
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ter is incremented on each WRITE. A second register array stores the
latest completed version number for each replicated object. Numeric
ALUs compare values in this array with version numbers in the reply
headers.

the replica set size is read and fed into the selection logic unit
to calculate an index for locating the server ID in the list (the
selection logic can pick any servers for WRITE requests). Note
that we collapse the server ID list of all replicated keys into
a single register array, leveraging the fact that each key can
be replicated on at most n servers. Therefore, to locate the ith
replica for the kth key, the index is calculated as k ∗n+ i (for
brevity, we will use relative indices, i.e. i in the formula, for
the remaining discussion).

If the version number engine indicates that the Pegasus re-
ply has a higher version number, the size of the replica set
is reset to one, and the replica set bitmap and server ID list
are reset to contain only the server ID in the reply packet. If
the version number engine indicates that the version numbers
are equal, the switch uses the bitmap to check if the server is
already in the replica set. If not, it updates the bitmap, incre-
ments the replica set size, and appends the server ID to the
end of the server list.

To add a new replicated key, the controller sets the replica
set size to one, and the bitmap and server ID list to contain
only the home server.

Address Rewrite Table The address rewrite table maps
server IDs to the corresponding IP addresses and ports, and is
kept up to date by the controller as servers are added. When
the replica set directory chooses a single server as the desti-
nation, the address rewrite table updates the headers accord-
ingly. If the replica set directory selects multiple servers (for
a WRITE request), we use the packet replication engine on the
switch to forward the packet to the corresponding multicast
group.

Statistics Engine To detect the most popular O(n logn)
keys in the workload, we construct a statistics engine to track
the access rate of each key. For replicated keys, the switch
maintains counters in a register array. This approach is obvi-
ously not feasible for the vast number of non-popular keys.
The statistics engine instead samples requests for unreplicated
keys, forwarding them to the switch CPU. A dedicated pro-
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& |
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Logic
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Figure 6: Design of the switch replica set directory. The directory
uses three register arrays: one array stores the size of each replica
set; another array maintains a bitmap for each set, tracking which
servers are currently in the set; the last array stores a list of server
IDs in each set.

gram on the switch CPU constructs an access frequency table
from sampled packets. The sampling component serves two
purposes: it reduces the traffic to the switch CPU and it func-
tions as a high-pass filter to filter out keys with low access
frequency. The controller scans both statistics tables to deter-
mine when newly popular keys need to be replicated or repli-
cation stopped for existing keys, and makes these changes
following the protocol in §6.3.

Two separate register arrays track the READ and WRITE
count for each replicated key. The controller uses these to
compute the read/write ratio, which the selection logic in the
replica set directory uses to decide how many replicas to use
for each WRITE request.

9 Evaluation
Our Pegasus implementation includes switch data and con-
trol planes, a Pegasus controller, and an in-memory key-value
store. The switch data plane is implemented in P4 [7] and runs
on a Barefoot Tofino programmable switch ASIC [63]. The
Pegasus controller is written in Python. It reads and updates
the switch data plane through Thrift APIs [62] generated by
the P4 SDE. The key-value store client and server are im-
plemented in C++ with Intel DPDK [15] for optimized I/O
performance.

Our testbed consists of 28 nodes with dual 2.2 GHz In-
tel Xeon Silver 4114 processors (20 total cores) and 48 GB
RAM running Ubuntu Linux 18.04. These are connected to
an Arista 7170-64S (Barefoot Tofino-based) programmable
switch using Mellanox ConnectX-4 25 Gbit NICs. 16 nodes
act as key-value servers and 12 generate client load.

To evaluate the effectiveness of Pegasus under realistic
workloads, we generated load using concurrent open-loop
clients, with inter-arrival time following a Poisson distribu-
tion. The total key space consists of one million randomly
generated keys, and client requests chose keys following ei-
ther a uniform distribution or a skewed (Zipf) distribution.

We compared Pegasus against two other load balancing so-
lutions: a conventional static consistent hashing scheme for
partitioning the key space, and NetCache [29]. The consis-
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Figure 7: Maximum throughput achievable subject to a 99% latency
SLO of 50 us. Pegasus successfully rebalances request load, main-
taining similar performance levels for uniform and skewed work-
loads.

tent hashing scheme assigns 16 virtual nodes to each storage
server to improve load balancing. We additionally evaluated
a version of Pegasus that supports at-most-once semantics
(Pegasus-AMO, as described in §6.4). To allow a compari-
son with NetCache, we generally limit ourselves to 64-byte
keys and 128-byte values, as this is the largest object value
size it can support. NetCache reserves space for up to 10,000
128-byte values in the switch data plane, consuming a sig-
nificant portion of the switch memory. In contrast, Pegasus
consumes less than 3.5% of the total switch SRAM. At larger
key and value sizes, Pegasus maintains similar performance
and memory usage, whereas NetCache cannot run at all.

9.1 Impact of Skew

To test and compare the performance of Pegasus under a
skewed workload, we measured the maximum throughput of
all four systems subject to a 99%-latency SLO. We some-
what arbitrarily set the SLO to 5× of the median unloaded
latency (we have seen similar results with different SLOs).
Figure 7 shows system throughput under increasing workload
skew with read-only requests. Pegasus maintains the same
throughput level even as the workload varies from uniform
to high to extreme skew (Zipf α = 0.9–1.2),1 demonstrating
its effectiveness in balancing load under highly skewed ac-
cess patterns. Since the workload is read-only, Pegasus with
at-most-once support (Pegasus-AMO) has the exact same per-
formance. In contrast, throughput of the consistent hashing
system drops to as low as 10% under more skewed work-
loads. At α = 1.2, Pegasus achieves a 10× throughput im-
provement over consistent hashing. NetCache provides sim-
ilar load balancing benefits. In fact, its throughput increases
with skew, outperforming Pegasus. This is because requests
for the cached keys are processed directly by the switch, not
the storage servers, albeit at the cost of significantly higher
switch resource overhead.

1 Although α = 1.2 is a very high skew level, some major storage systems
reach or exceed this level of skew. For example, more than half of Twit-
ter’s in-memory cache workloads can be modeled as Zipf distributions with
α > 1.2 [67], as can Alibaba’s key-value store workload during peak usage
periods [10].
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Figure 8: Throughput vs. write ratio. Pegasus maintains its load
balancing advantage across the spectrum of write ratios, whereas
NetCache suffers a significant penalty with even 10% writes.

9.2 Read/Write Ratio

Pegasus targets not only read-intensive workloads, but also
write-intensive and read-write mixed workloads. Figure 8
shows the maximum throughput subject to a 99%-latency
SLO of 50 µs when running a highly skewed workload (Zipf-
1.2), with varying write ratio. The Pegasus coherence protocol
allows write requests to be processed by any storage server
while providing strong consistency, so Pegasus can load bal-
ance both read and write requests. As a result, Pegasus is able
to maintain a high throughput level, regardless of the write
ratio. Even with at-most-once semantics enforced, Pegasus-
AMO performs equally well for all write ratios, by leveraging
the randomness in requests’ REQID (§6.4) to distribute write
requests to all servers. This is in contrast to NetCache, which
can only balance read-intensive workloads; it requires stor-
age servers to handle writes. As a result, NetCache’s through-
put drops rapidly as the write ratio increases, approaching
the same level as static consistent hashing. Even when only
10% of requests are writes, its throughput drops by more than
80%. Its ability to balance load is eliminated entirely for write-
intensive workloads. In contrast, Pegasus maintains its high
throughput even for write-intensive workloads, achieving as
much as 11.8× the throughput as NetCache. Note that Pega-
sus’s throughput does drop with higher write ratio. This is due
to the increasing write contention and cache invalidation on
the storage servers.

9.3 Scalability

To evaluate the scalability of Pegasus, we measured the max-
imum throughput subject to a 99%-latency SLO under a
skewed workload (Zipf 1.2) with increasing number of storage
servers, and compared it against the consistent hashing system.
As shown in Figure 9, Pegasus scales nearly perfectly as the
number of servers increases. On the other hand, throughput of
consistent hashing stops scaling after two servers: due to se-
vere load imbalance, the overloaded server quickly becomes
the bottleneck of the entire system. Adding more servers thus
does not further increase the overall throughput.

We also evaluate the performance of an end-host coher-
ence directory implementation, using Pegasus’s protocol with
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Figure 10: Throughput vs. object size. Pegasus provides effective load
balancing across a wide range of object sizes. The performance of a
traditional design under a uniform workload is shown as a baseline.

a server in place of the switch. Because the directory needs to
process twice as many packets as the storage servers for each
client request (both requests and replies), this implementation
is unable to keep up with even a single server – highlighting
the importance of using an accelerated platform like a switch-
ing ASIC as the coherence directory.

9.4 Object Sizes

To test if Pegasus can handle different object sizes, we varied
the value size from 64 bytes to 1 KB and measured the max-
imum throughput of Pegasus subject to a 99%-latency SLO
under the same skewed workload. We additionally plot the
throughput of the consistent hashing system under a uniform
workload. Figure 10 shows that Pegasus is equally efficient in
load balancing for both small and large objects. Its through-
put under a highly skewed workload is virtually equivalent
to that of consistent hashing under a zero-skewed workload.
Note that the throughput in the figure uses number of opera-
tions per second (which should naturally decrease with larger
object size), not bits per second.

9.5 Impact of Number of Replicated Keys

Keeping the size of coherence directory small is crucial as
switches are highly resource constrained. Our analysis (§4.5)
shows that Pegasus only needs to replicate the O(n logn) most
popular keys to balance load under arbitrary access patterns.
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Figure 11: Throughput vs. number of replicated keys. For these work-
loads, only 8–16 replicated keys are needed to achieve most of Pega-
sus’s load balancing benefit.

What constant factors are hidden here? For adversarial work-
loads, they are not high (e.g, 8n logn) [17]. We show in Fig-
ure 11 that they are even lower for our non-adversarial Zipf
workload. Specifically, Pegasus only needs to replicate 8–16
keys to achieve its throughput benefit – significantly less than
n logn. While these numbers would be expected to increase
with more servers, they easily remain within the capacity of
the switch’s register memory.

9.6 Server Selection Policies

We have implemented two policies for selecting servers for
replicated objects: random and weighted round-robin. We
evaluated both policies: Figure 12 shows their maximum
throughput under different workloads.

Both policies are quite effective at distributing load for uni-
form and highly skewed workloads when we use a set of
dedicated, homogeneous servers with the same load capacity.
The random policy begins to fall short, however, when some
servers are more capable than others, or background process
sap their available capacity. We evaluated this by reducing the
processing capacity of half of the servers by 50%. As shown
in Figure 12, throughput with the random policy drops 50% as
the slower servers become the performance bottleneck, even
though the faster servers still have spare processing capacity.
By collecting load information from the servers and setting
the weights accordingly, the weighted round-robin policy al-
lows both the slower and faster servers to fully utilize their
processing capacity.

9.7 Handling Dynamic Workloads

Finally, we evaluated Pegasus under dynamic workloads with
changing key popularity, similar to SwitchKV [41] and Net-
Cache [29]. Specifically, we selected 100 keys every 10 sec-
onds and changed their popularity rankings in the Zipf distri-
bution. Here we consider two dynamic patterns:
• Hot-in. The 100 coldest keys in the popularity ranking are

promoted to the top of the list, immediately turning them
into the hottest objects. This workload represents extreme
fluctuations in object popularities, which we hypothesize
is rare in real world workloads.
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Figure 12: Comparing Pegasus server selection policies: throughput
with a 99% latency SLO of 50 us. A random selection policy provides
good statistical load balancing when server capacity is uniform;
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(b) Random: 100 random keys swap popularity every 10 s

Figure 13: Dynamic workloads. Pegasus reacts quickly to changes
in object popularity.

• Random. We randomly select 100 keys from the 10,000
hottest keys, and swap their popularities with another set
of randomly chosen keys. As the most popular keys are
less likely to be changed, this dynamism represents a more
moderate change to object popularity.
We evaluate Pegasus for these workloads with a Zipf-1.2

workload and 80% utilization.

Hot-in. Sudden changes to the popularity of all hottest keys
cause the tail latency to increase. Pegasus, however, is able
to immediately detect the popularity changes and updates the
in-switch coherence directory. A workload change this drastic
is unlikely, but Pegasus nevertheless reacts quickly. Within
100 ms, tail latency observed by clients returns to normal.

Random. Under a random dynamic pattern, only a moder-
ate number of the most popular keys are changed. Pegasus
thus can continue balancing load for the unaffected keys, and
leveraging load-aware scheduling to avoid overloading the
servers. No change in 99% end-to-end latency is observed.
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Figure 14: Throughput of single-rack vs. multi-rack configuration
during a rack failure. After the failure (t = 0), the multi-rack config-
uration continues processing requests but loses some capacity.

9.8 Multi-Rack

To test a multi-rack configuration, we use a larger (but slower)
cluster with 72 servers with dual 1.8 GHz Intel Xeon E5-2450
processors. These are organized into two racks, each with 24
storage servers and one Pegasus switch, plus a third rack of
client machines. Per-node performance is significantly lower,
largely because these servers use 10 Gbit NICs that do not
support DPDK.

The two 24-server racks are configured into a 2-replica con-
figuration: each rack acts as the head of the chain for half of
the keys and the tail for the other half. Because both repli-
cas need to handle WRITEs but only the tail processes READs,
adding a second rack not only provides fault tolerance, it dou-
bles read throughput; write throughput remains unchanged.

Figure 14 demonstrates this by comparing a single-rack
and two-rack configurations, running a read-only workload
with Zipf α = 1.2; the two-rack configuration has 1.7× the
throughput. At t = 0, one rack fails. The two-rack deploy-
ment is able to continue processing at half of its speed using
the remaining rack. The single-rack deployment, of course,
becomes entirely unavailable.

10 Related Work
Load Balancing. Load imbalance in large-scale key-value
stores has been addressed by past systems in three ways. Con-
sistent hashing [30] and virtual nodes [12] are widely used,
but do not perform well with changing workloads. Solutions
based on migration [11, 32, 61] and randomness [49] can be
used to balance dynamic workloads, but these techniques in-
troduce additional overheads and have limited ability to han-
dle high skew. EC-Cache [57] balances load using erasure
coding to split and replicate values, but works best for large
keys in data-intensive clusters. SwitchKV [41] balances load
across a flash-based storage layer using switches to route to an
in-memory caching layer; it cannot react fast enough to chang-
ing load when the storage layer is in memory. NetCache [29]
caches values directly in programmable dataplane switches;
while this provides excellent throughput and latency, value
sizes are limited by switch hardware constraints.

Another class of load balancers are designed to balance
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layer 4 traffic, such as HTTP, across a dynamic set of backend
servers. These systems may be implemented as clusters of
servers, as in Ananta [54], Beamer [52], and Maglev [16]; or
using switches, as in SilkRoad [47] or Duet [20]. These sys-
tems are designed to balance long-lived flows across servers,
whereas Pegasus balances load of individual request packets.
Prism [23] provides a way to perform request-level load bal-
ancing by migrating TCP and TLS connections, an approach
that could be useful for Pegasus as an alternative to its UDP-
based protocol.

Several new systems use programmable switches for
application-specific load balancing protocols. R2P2 [33] load
balances RPCs for stateless services where any request can
be handled by any server. Harmonia [69] allows optimized
forwarding for read requests in replicated systems by tracking
when concurrent writes are in progress.

Directory-Based Coherence. Directory-based coherence
protocols have been used in a variety of shared-memory mul-
tiprocessors and distributed shared memory systems [4, 19,
22, 31, 34, 36, 37, 40]. These systems can be thought of as
key-value stores with fixed-size keys (addresses) and values
(cache lines or pages). Directory protocols have been used in
general key-value stores as well; IncBricks [44] implements
an in-network key-value store using a distributed directory
to cache values in network processors attached to datacenter
switches. Keys have a designated home node that is involved
in writes and coherence operations, limiting load-balancing
opportunities for write-intensive workloads. Pegasus stores
keys and values only in servers, and its coherence protocol
allows any storage server to handle write requests, so Pegasus
can load-balance both read- and write-intensive workloads.
Both systems can scale beyond a rack and tolerate failures:

IncBricks does so at the individual server level; Pegasus does
so at the rack level.

11 Conclusion
With Pegasus, we have demonstrated that programmable
switches can improve the load balancing of a storage appli-
cation. Using our in-network coherence directory protocol,
the switch takes over responsibility for placement of the most
popular keys. This makes possible new data placement poli-
cies that cannot be achieved using traditional methods, such
as reassigning the set of replicas on each write or selecting
read replicas based on fine-grained load measurements. The
end result is that Pegasus increases by 10× the throughput
level achievable subject to a latency SLO, compared to a con-
sistent hashing workload. This permits a major reduction in
the size of a cluster needed to support a particular workload.

More broadly, we believe that Pegasus provides an exam-
ple of the class of applications that programmable dataplane
switches are well suited for. It takes a classic use case for
network devices – load balancing – and extends it to the next
level by integrating it with an application-level protocol.
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A Artifact Appendix
Abstract

Our artifact includes the following components: 1) P4 source
code of the Pegasus switch data plane, 2) Python source
code of the Pegasus switch controller, 3) C++ implemen-
tation of an in-memory key-value store with Intel DPDK,
4) configuration files and Python/shell scripts for running Pe-
gasus experiments in a cluster, and 5) a TLA+ specification
of the Pegasus protocol. The artifact is publicly available at:
https://github.com/NUS-Systems-Lab/pegasus.

A.1 Artifact check-list
• Algorithm: Coherence protocol.
• Program: Key-value store, P4 packet processing program.
• Compilation: GCC 7.5.0 (Ubuntu 7.5.0-3ubuntu11̃8.04), Bare-

foot SDE 9.1.1
• Binary: Generated from GCC compiler and Barefoot SDE.
• Run-time environment: Ubuntu 18.04 LTS (Linux 4.15), Bare-

foot SDE 9.1.1
• Hardware: Dual socket 2.2 GHz Intel Xeon Silver 4114 pro-

cessors with 20 cores and 48 GB RAM per socket. Mellanox
ConnectX-4 25 Gbit NICs. Arista 7170-64S (barefoot Tofino-
based) programmable switch.

• Execution: Bash and Python scripts.
• Output: Throughput. Average, median, 90%, 99% latencies.
• Experiments: Experiments as specified in the main paper (§9).

Customizable experiment parameters: number of clients and
servers, client request rate, read/write ratio, Zipfian coefficient,
value size, number of keys, maximum number of replicated ob-
jects, and experiment duration.

• Expected experiment run time: 10-60 seconds per experiment.
• Public link: https://github.com/NUS-Systems-Lab/pegasus
• Code licenses: MIT license.

A.2 Description

A.2.1 How to access

All source code, configuration files, and scripts are publicly available
at: https://github.com/NUS-Systems-Lab/pegasus.

A.2.2 Hardware dependencies

The artifact requires a P4 programmable switch (e.g., Barefoot
Tofino programmable switch ASIC). The network interface cards
on the client and server machines need to support Intel DPDK.

A.2.3 Software dependencies

The artifact has been tested on Ubuntu 18.04 LTS (Linux kernel 4.15).
Compiling and running the Pegasus P4 data plane program require
the Barefoot SDE (tested with version 9.1.1). Additional software
package dependencies:
• libevent
• Intel TBB
• libnuma
• zlib
• DPDK (tested with version 19.11)

• Python Sorted Containers
• Python PyREM

A.2.4 Data sets

Experiments in this artifact expect a text file that contains ASCII
keys (one key per line) for the key-value store. We provide a sample
keys file, artifact_eval/keys, that has one million 64B-keys.

A.3 Installation
First, download or clone the repository. Throughout this document,
we will use the following macros:
• $REPO: path to the root of the repository
• $SDE: path to Barefoot SDE
• $SDE_INSTALL: path to Barefoot SDE installation directory

A.3.1 Compiling Client and Server Code

Run make in $REPO.

A.3.2 Compiling P4 Code

On the target P4 switch:

cd $SDE/pkgsrc/p4-build

./configure P4_PATH=$REPO/p4/p4_tofino/pegasus.p4 \

P4_NAME=pegasus P4_PREFIX=pegasus \

P4_VERSION=p4-14 P4_FLAGS="--verbose 2" \

--with-tofino --prefix=$SDE_INSTALL \

--enable-thrift

make && make install

./configure P4_PATH=$REPO/p4/netcache/one.p4 \

P4_NAME=netcache P4_PREFIX=netcache \

P4_VERSION=p4-14 P4_FLAGS="--verbose 2" \

--with-tofino --prefix=$SDE_INSTALL \

--enable-thrift

make && make install

Note that the location of p4-build may depend on the Barefoot
SDE version.

A.4 Experiment workflow

A.4.1 P4 Switch

First, start the Pegasus switch daemon on the P4 switch:

cd $SDE

./run_switchd.sh -p pegasus

Or if running NetCache, run the following:

cd $SDE

./run_switchd.sh -p netcache

In the switch shell, add and enable all switch ports used by the
experiments.

Secondly, modify $REPO/artifact_eval/pegasus.json and
$REPO/artifact_eval/netcache.json with the testbed cluster con-
figuration (refer to artifact_eval/README.md for configuration file
format).
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Thirdly, start the Pegasus switch controller:

cd $REPO

./artifact_eval/run_pegasus_controller.sh

Or if running NetCache, run the following:

cd $REPO

./artifact_eval/run_netcache_controller.sh

A.4.2 End-Hosts

First, modify $REPO/artifact_eval/testbed.config with the
cluster configuration. Refer to artifact_eval/README.md for the
format of the file.

Secondly, modify the experiment python script
$REPO/artifact_eval/run_experiments.py. Update clients

and servers with actual host names of the client and server
machines.

Lastly, on a machine that has ssh connectivity to all clients and
servers, run the following:

python2 $REPO/artifact_eval/run_experiments.py

A.5 Evaluation and expected result
The experiment python script outputs the following statistics:
• Total throughput

• Average latency
• Median latency
• 90% latency
• 99% latency

Modify n_client_threads and interval in the experiment
script to control the client load. Tune them until getting the max-
imum throughput with some 99% latency SLO, as reported in the
paper.

To evaluate the different workloads and system configurations
as specified in §9, vary the following parameters in the experiment
script:
• n_servers: number of servers used in the experiment
• node_config: one of pegasus, netcache, or static (consistent

hashing). Note that pegasus and netcache require running the
corresponding P4 switch daemon and controller.

• alpha: Zipfian coefficient
• get_ratio: percentage of read requests in the workload (0.0 -

1.0)
• key_type: key access distribution. Either unif (uniform) or zipf

(Zipfian)
• value_len: value size (in bytes)
• n_keys: total number of keys

A.6 AE Methodology
Submission, reviewing and badging methodology:
• https://www.usenix.org/conference/osdi20/

call-for-artifacts
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